Cellular Glucose Uptake During Breath-Hold Diving in Experienced Male Breath-Hold Divers
نویسندگان
چکیده
BACKGROUND The physiological and pathophysiological mechanisms that govern diving, both self-contained underwater breathing apparatus (SCUBA) and breath-hold diving (BH-diving), are in large part well known, even if there are still many unknown aspects, in particular about cell metabolism during BH-diving. The scope of this study was to investigate changes in glycemia, insulinemia, and the catecholamine response to BH-diving, to better understand if the insulin-stimulated glucose uptake mechanism is involved in cellular metabolism in this sport. METHODS Twenty male experienced healthy breath-hold divers were studied. Anthropometric information was obtained. Glycemia, insulinemia, and catecholamine response were investigated before and after the series of BH-diving. RESULTS We found a statistically significant decrease in the blood glucose levels between before and after dives (mean 94.3 ± 11.6 vs. 83.5 ± 12.5 mg/dl) P = 0.001 and a statistically significant increase in blood insulin value (median 4.5 range 3.4/6.4 vs. 7.0 range 4.2/10.2 mcgU/ml) P < 0.0001. Also, we found a statistically significant increase of catecholamine production (median 14.0 range 8/18 vs. 15.5 range 10.0/21.0 μg) P < 0.0001. CONCLUSIONS The increase in blood insulin during BH-diving associated with the decrease of blood glucose levels could indicate that the upregulating cellular uptake is not caused by activation of the specific glucose transporters. Particular diving-related conditions such as the diving reflex, the intermittent hypoxia/hyperoxia, and the particular environmental condition could play an important role in the mechanism involved in glycemia decrease in BH-diving. Our data confirm that the adaptations to BH-diving are caused by complex mechanisms and involve many peculiar responses still in large part unknown.
منابع مشابه
A survey of neurological decompression illness in commercial breath-hold divers (Ama) of Japan.
A survey was conducted in the northern district of Yamaguchi, Japan to determine the relationship between neurological diving accidents and risk factors among commercial breath-hold divers (Ama). A questionnaire was distributed to 381 Ama divers who are members of the Ama diving union. We sought information on their dive practices (depth of single dive, single dive time, surface interval, lengt...
متن کاملSports-related lung injury during breath-hold diving.
The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia an...
متن کاملRisk of decompression sickness in extreme human breath-hold diving.
The risk of decompression sickness (DCS) in human breath-hold diving is expected to increase as dives progress deeper until a depth is reached where total lung collapse stops additional nitrogen gas uptake. We assembled a database of all documented human breath-hold dives to 100 metres or greater, including both practice and record dives. Between 1976 and 2006 there were 192 such dives confirme...
متن کاملWhy predominantly neurological decompression sickness in breath-hold divers?
It has been widely believed that human free divers were immune to decompression sickness because the only inert gas added during a breath-hold dive is the nitrogen (N2) that remains in the lungs from the inhalation before submerging. However, there has been anecdotal evidence from case reports of divers suffering neurological symptoms after repeated free dives. In breath-hold divers of the Tuam...
متن کاملCardiac function during breath-hold diving in humans: an echocardiographic study.
Breath-hold diving induces, in marine mammals, a reduction of cardiac output due to a decrease of both heart rate and stroke volume. Cardiovascular changes in humans during breath-hold diving are only partially known due to the technical difficulty of studying fully immersed subjects. Recently, a submersible echocardiograph has been developed, allowing a feasible assessment of cardiac anatomy a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2018